Scalar glueball decay rates from string theory (through the top-down holographic Witten-Sakai-Sugimoto model)

Anton Rebhan

Institute for Theoretical Physics TU Wien, Vienna, Austria

February 10, 2016

(日) (同) (三) (三)

Still elusive: Glueballs

Spectrum of *bare* glueballs (prior to mixing with $q\bar{q}$ states) more or less known from lattice:

 $\begin{array}{l} m_{0^{++}}\sim 1.7 \,\, {\rm GeV} \\ m_{2^{++}}\sim 2.4 \,\, {\rm GeV} \end{array}$

Morningstar & Peardon hep-lat/9901004

A D > A B > A B >

Still elusive: Glueballs

Spectrum of *bare* glueballs (prior to mixing with $q\bar{q}$ states) more or less known from lattice:

 $\begin{array}{l} m_{0^{++}} \sim 1.7 \,\, \mathrm{GeV} \\ m_{2^{++}} \sim 2.4 \,\, \mathrm{GeV} \end{array}$

Interactions of glueballs still unclear:

- Are glueballs broad or narrow?
- Do they mix with $q\bar{q}$ strongly or weakly?

 \rightarrow no conclusive identification of any glueball in meson spectrum most discussed lowest 0^{++} candidates:

narrow $f_0(1500)$ or $f_0(1710)$ vs. very broad background ("red dragon")

- 不同 ト イモト イモト

Still elusive: Glueballs

Spectrum of *bare* glueballs (prior to mixing with $q\bar{q}$ states) more or less known from lattice:

 $\begin{array}{l} m_{0^{++}}\sim 1.7 \,\, {\rm GeV} \\ m_{2^{++}}\sim 2.4 \,\, {\rm GeV} \end{array}$

Interactions of glueballs still unclear:

- Are glueballs broad or narrow?
- Do they mix with $q\bar{q}$ strongly or weakly?

 \rightarrow no conclusive identification of any glueball in meson spectrum most discussed lowest 0^{++} candidates:

narrow $f_0(1500)$ or $f_0(1710)$ vs. very broad background ("red dragon") various phenomenological models describe $f_0(1500)$ or $f_0(1710)$ alternatingly as \sim 50-70% or \sim 75-90% glue

A D N A R N A R N A R N

Lattice: glueball spectrum at $N_c = 3$ rather similar to large N_c

Lattice: glueball spectrum at $N_c = 3$ rather similar to large N_c

- Consider 't Hooft limit (1974): $N_c \to \infty$ with $\lambda = g^2 N_c$ (and N_f) fixed
- Only planar diagrams left (quarks, if any, at the edges)
- If confining, $N \to \infty$ QCD free theory of (infinite no. of) stable mesons and glueballs

Lattice: glueball spectrum at $N_c = 3$ rather similar to large N_c

Consider 't Hooft limit (1974): $N_c \to \infty$ with $\lambda = g^2 N_c$ (and N_f) fixed

- Only planar diagrams left (quarks, if any, at the edges)
- If confining, $N
 ightarrow \infty$ QCD free theory of (infinite no. of) stable mesons and glueballs

Finite, large N:

- mixing of mesons and glueballs at most $\sim N^{-1/2}$
- meson decay rates $\sim N^{-1}$
- glueball decay rates $\sim N^{-2}$

If large-N limit appropriate starting point for approximations: glueballs should be weakly mixed and relatively stable (though in Veneziano limit $N_c \sim N_f \gg 1$ strong mixing!)

 $1/N_c$ expansion may be good expansion even at $N_c=3,$ if coefficients conspire like in QED (QED: $e\approx 0.303,$ but expansion parameter $e^2/4\pi=1/137)$

Alas, no direct way to sum planar diagrams

 $1/N_c$ expansion may be good expansion even at $N_c=3,$ if coefficients conspire like in QED (QED: $e\approx 0.303,$ but expansion parameter $e^2/4\pi=1/137)$

Alas, no direct way to sum planar diagrams

early suspicion of relation to string theory by 't Hooft (expansion parameter is genus of diagrams like in string perturbation theory)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $1/N_c$ expansion may be good expansion even at $N_c=3,$ if coefficients conspire like in QED (QED: $e\approx 0.303,$ but expansion parameter $e^2/4\pi=1/137)$

Alas, no direct way to sum planar diagrams

early suspicion of relation to string theory by 't Hooft (expansion parameter is genus of diagrams like in string perturbation theory)

1997: Maldacena's AdS/CFT (gauge/gravity) duality eventually established such a link (Witten: "Thus the old prophecy comes to pass.")

4 D N 4 B N 4 B N 4 B N

Holographic QCD

Celebrated AdS/CFT duality relates strongly coupled large- N_c supersymmetric Yang-Mills theories to supergravity on anti-de Sitter space in 5 dimensions (AdS₅× S^5)

Holographic QCD: generalization to nonconformal nonsupersymmetric case Options:

- Bottom-up: breaking of conformal invariance (necessary for confinement) by hand and matching to QCD with holographic dictionary, e.g. hard-wall model (Erlich-Katz-Son-Stephanov 2005) soft-wall model (Karch-Katz-Son-Stephanov 2006)
- **Top-down**: first-principles constructions from superstring theory with nonconformal D-branes
 - here: Witten[1998]-Sakai-Sugimoto[2004] model

Both approaches surprisingly successful quantitative description of low-energy QCD with minimal set of parameters

WSS model: almost parameter-free (1 coupling at a certain mass scale)!

- Clueball decay pattern [with E R
- Glueball decay pattern [with F. Brünner & D. Parganlija]
- Effects from finite quark masses [with F. Brünner]: lifting of flavor blindness; $\eta\eta'$ decay rates

Witten model: Holographic nonsupersymmetric QCD

E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998):

Type-IIA string theory with $N_c \rightarrow \infty$ D4 branes dual to 4 + 1-dimensional super-Yang-Mills theory

• • • • • • • • • • • •

Witten model: Holographic nonsupersymmetric QCD

E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998):

Type-IIA string theory with $N_c \rightarrow \infty D4$ branes dual to 4 + 1-dimensional super-Yang-Mills theory

(日) (同) (日) (日)

supersymmetry completely broken by compactification on "thermal-like" circle $x_4 \equiv x_4 + 2\pi/M_{\rm KK \ (Kaluza-Klein)}$

- \bullet antisymmetric b.c. for adjoint fermions: masses $\sim M_{\rm KK}$
- ullet adjoint scalars not protected by gauge symmetry: also masses $\sim M_{\rm KK}$
 - ightarrow dual to pure-glue YM theory 3+1-dimensional at scales $\ll M_{\rm KK}$

but supergravity approximation needs weak curvature, cannot take limit $M_{\rm KK} \to \infty$

Deconfinement phase transition

Thermal circle in Euclidean time τ in addition to compactified x_4 Hawking-Page transition when $2\pi T = M_{\rm KK}$ (thus ~ 1 GeV ?)

Confined phase

Deconfined phase

$$ds^{2} = \left(\frac{u}{R}\right)^{3/2} \left[d\tau^{2} + d\mathbf{x}^{2} + f(u)dx_{4}^{2}\right]$$
$$+ \left(\frac{R}{u}\right)^{3/2} \left[\frac{du^{2}}{f(u)} + u^{2}d\Omega_{4}^{2}\right]$$

Cigar topology in x_4 -u subspace

$$ds^{2} = \left(\frac{u}{R}\right)^{3/2} \left[\tilde{f}(u)d\tau^{2} + \delta_{ij}d\mathbf{x}^{2} + dx_{4}^{2}\right]$$
$$+ \left(\frac{R}{u}\right)^{3/2} \left[\frac{du^{2}}{\tilde{f}(u)} + u^{2}d\Omega_{4}^{2}\right]$$

Cigar in τ -u = Euclidean black hole

イロト 不得下 イヨト イヨト 二日

Glueballs in confined phase

 \exists scalar and tensor glueballs corresponding to 5D dilaton Φ and graviton G_{ij} Csaki, Ooguri, Oz & Terning 1999

<ロ> (日) (日) (日) (日) (日)

Glueballs in confined phase

 \exists scalar and tensor glueballs corresponding to 5D dilaton Φ and graviton G_{ij} Csaki, Ooguri, Oz & Terning 1999

Type-IIA supergravity compactified on x_4 -circle many more modes: Constable & Myers 1999; Brower, Mathur & Tan 2000

Mode	S ₄	T_4	V_4	N_4	M_4	L_4
Sugra fields	G_{44}	Φ, G_{ij}	C_1	B_{ij}	C_{ij4}	G^{α}_{α}
J^{PC}	0++	$0^{++}/2^{++}$	0^{-+}	1^{+-}	1	0^{++}
n=0	7.30835	22.0966	31.9853	53.3758	83.0449	115.002
n=1	46.9855	55.5833	72.4793	109.446	143.581	189.632
n=2	94.4816	102.452	126.144	177.231	217.397	277.283
n=3	154.963	162.699	193.133	257.959	304.531	378.099
n=4	228.709	236.328	273.482	351.895	405.011	492.171

Lowest mode not from dilaton, but from "exotic polarization" - in 11D notation:

$$\begin{split} \underline{\delta g_{44}} &= -\frac{r^2}{L^2} f \, H(r) G(x), \quad \delta g_{\mu\nu} = \frac{r^2}{L^2} \left[\frac{1}{4} H(r) \eta_{\mu\nu} - \left(\frac{1}{4} + \frac{3R^6}{5r^6 - 2R^6} \right) H(r) \frac{\partial_{\mu} \partial_{\nu}}{M^2} \right] G(x) \\ \delta g_{11,11} &= \frac{r^2}{L^2} \frac{1}{4} H(r) G(x), \quad \delta g_{rr} = -\frac{L^2}{r^2} f^{-1} \frac{3R^6 H(r) G(r)}{5r^6 - 2R^6}, \quad \delta g_{r\mu} = \frac{90r^7 R^6 H(r) \partial_{\mu} G(x)}{M^2 L^2 (5r^6 - 2R^6)^2} \\ &= 0 \text{ and } (0, 1) +$$

Lattice glueballs vs. supergravity glueballs

Sakai-Sugimoto model: Adding chiral quarks

T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005) add N_f D8- and $\overline{\text{D8}}$ -branes, separated in x_4 , $N_f \ll N_c$ (probe branes)

	0	1	2	3	4	5	6	7	8	9
D4	x	x	x	x	x					
$D8/\overline{D8}$	×	×	x	x		x	x	×	х	x

< ロ > < 同 > < 三 > < 三

Sakai-Sugimoto model: Adding chiral quarks

T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005) add N_f D8- and $\overline{\text{D8}}$ -branes, separated in x_4 , $N_f \ll N_c$ (probe branes)

	0	1	2	3	4	5	6	7	8	9
D4	x	x	х	x	x					
$D8/\overline{D8}$	×	x	х	x		x	х	x	x	x

4-8, 4- $\overline{8}$ strings \rightarrow fundamental, massless chiral fermions

flavor symmetry $U(N_f)_L \times U(N_f)_R$

spontaneously broken because $D8-\overline{D8}$ have to join in cigar-shaped topology

for now: maximal separation in x_4 (antipodal on x_4 circle): $L=\pi/M_{
m KK}$

Quantitative predictions

Isotriplet Meson	$\lambda_n = m^2 / M_{\rm KK}^2$	$m/m_{ ho}$	$(m/m_{\rho})^{\exp}$	$(m/m_{ ho})^{N \to \infty}$
$1^{}(\rho)$	0.669314	1	1	1
$1^{++}(a_1)$	1.568766	1.531	1.59(5)	1.86(2)
$1^{}(\rho^*)$	2.874323	2.072	1.89(3)	2.40(4)
$1^{++}(a_1^*)$	4.546104	2.606	2.12(3)	2.98(5)

Parameter-free prediction of (axial-)vector meson mass pattern:

(last column from lattice study by Bali et al. JHEP 06, 071 (2013))

イロト イポト イヨト イヨト

agreement within $\lesssim 20\%$

not bad, given that WSS is not yet large-N QCD (in particular at scales $\gtrsim M_{
m KK}$)

(near-perfect agreement for $m_{a_1}/m_{
ho}$ with real QCD certainly fortuitous)

Quantitative predictions

Other predictions depend on value of 't Hooft coupling λ at scale $M_{
m KK}$

Matching

- $m_{\rho} \approx 776 \text{ MeV} \text{ fixes } \overline{M_{\text{KK}} = 949 \text{ MeV}} \ (\Rightarrow T_{deconf} = 151 \text{ MeV})$
- $f_{\pi}^2 = \frac{\lambda N_c}{54\pi^4} M_{\text{KK}}^2$ gives $\lambda = g_{\text{YM}}^2 N_c \approx 16.63$ [Sakai&Sugimoto 2005-7] (matching instead large- N_c lattice result [Bali et al. 2013] for $m_\rho/\sqrt{\sigma}$ gives $\lambda \approx 12.55$)

Quantitative predictions

Other predictions depend on value of 't Hooft coupling λ at scale $M_{
m KK}$

Matching

• $m_{\rho} \approx 776 \text{ MeV} \text{ fixes } \overline{M_{\text{KK}} = 949 \text{ MeV}} \ (\Rightarrow T_{deconf} = 151 \text{ MeV})$

• $f_{\pi}^2 = \frac{\lambda N_c}{54\pi^4} M_{\rm KK}^2$ gives $\lambda = g_{\rm YM}^2 N_c \approx 16.63$ [Sakai&Sugimoto 2005-7] (matching instead large- N_c lattice result [Bali et al. 2013] for $m_{\rho}/\sqrt{\sigma}$ gives $\lambda \approx 12.55$)

yields (for $N_c = 3$ and $\lambda = 16.63...12.55$):

- LO decay rate of ρ meson $\sim \lambda^{-1} N_c^{-1}$ $\Gamma_{\rho \to 2\pi}/m_{\rho} = 0.1535 \dots 0.2034$ (exp.: 0.191(1))
- decay rate for $\omega \to 3\pi$ (from Chern-Simons part of D8 action) $\sim \lambda^{-4} N_c^{-2}$ $\Gamma_{\omega \to 3\pi}/m_{\omega} = 0.0033...0.0102$ (exp.: 0.0097(1))
- gluon condensate [Kanitscheider, Skenderis & Taylor JHEP 0809] $C^{4} \equiv \langle \frac{\alpha_{s}}{\pi} F_{\mu\nu}^{2} \rangle = \frac{4}{3^{7}\pi^{4}} N_{c} \lambda^{2} M_{KK}^{4} \simeq 0.0126 \dots 0.0072 \text{ GeV}^{4}$ classical SVZ value: 0.012 GeV⁴ (lattice higher but with large subtraction ambiguities)

4 D N 4 B N 4 B N 4 B N

Lattice vs. supergravity glueballs

seemingly good qualitative agreement by matching up 2^{++}

(but AdS spectrum

somewhat stretched and slightly too many 0^{++})

Morningstar & Peardon hep-lat/9901004: Brower, Mathur & Tan 2000: 12 12 1 10 10 4 8 8 3 n_g (GeV) 0.... r_om_g 6 6 4 4 1 2 2 4d QCD AdS Glueball Spectrum 0 ٥ 0 ++ ++ PC PC

A. Rebhan

Scalar glueball decay rates from string theory

February 10, 2016 13 / 25

Sakai-Sugimoto model: glueball masses $\propto M_{\rm KK} = 949$ MeV fixed by $m_{
ho}$

イロト 不得下 イヨト イヨト

Sakai-Sugimoto model: glueball masses $\propto M_{\rm KK} = 949$ MeV fixed by $m_{
ho}$

February 10, 2016 14 / 25

Sakai-Sugimoto model: glueball masses $\propto M_{\rm KK} = 949$ MeV fixed by $m_{
ho}$

Should exotic polarization (δG_{44} with x_4 the compactified direction of SYM₄₊₁) be excluded as lowest glueball mode?

- possibly not part of spectrum of holographic QCD in limit $M_{\rm KK} \to \infty, \lambda \to 0$ (already asked by Constable & Myers)
- $\bullet\,$ simpler bottom-up AdS/QCD have dilaton mode as dual for lowest glueball

Should exotic polarization (δG_{44} with x_4 the compactified direction of SYM₄₊₁) be excluded as lowest glueball mode?

- possibly not part of spectrum of holographic QCD in limit $M_{\rm KK} \to \infty, \lambda \to 0$ (already asked by Constable & Myers)
- $\bullet\,$ simpler bottom-up AdS/QCD have dilaton mode as dual for lowest glueball
- next lowest scalar mode ~ 1487 MeV is (predominantly) dilaton mode (induces metric perturbations other than δG_{44})

Should exotic polarization (δG_{44} with x_4 the compactified direction of SYM₄₊₁) be excluded as lowest glueball mode?

- possibly not part of spectrum of holographic QCD in limit $M_{\rm KK} \to \infty, \lambda \to 0$ (already asked by Constable & Myers)
- $\bullet\,$ simpler bottom-up AdS/QCD have dilaton mode as dual for lowest glueball
- next lowest scalar mode $\sim 1487~{\rm MeV}$ is (predominantly) dilaton mode (induces metric perturbations other than δG_{44})

Nonrealistic degeneracy of dilatonic 0^{++} and tensor 2^{++} suggests that supergravity approximation insufficient for masses

Take good results for (dimensionless) mesonic Γ/m as encouragement for calculation of relative width

Glueball- $\bar{q}q$ couplings in Sakai-Sugimoto model

Gravitational modes stable in confined background, but can calculate effective action for glueball- $\bar{q}q$ interactions

done for lowest (exotic) mode by Hashimoto, Tan & Terashima, Phys.Rev. D77 (2008) 086001 [arXiv:0709.2208]

revisited, corrected, and extended to other modes by Brünner, Parganlija & AR, Phys.Rev. D91 (2015) 106002 [arXiv:1501.07906]

For example: Vertices of one glueball and two (massless) pions for "exotic" mode:

$$S_{G_E\pi\pi} = \text{Tr} \int d^4x \frac{1}{2} \partial_\mu \pi \, \partial_\nu \pi \left(\breve{c}_1 \eta^{\mu\nu} - c_1 \frac{\partial^\mu \partial^\nu}{M_E^2} \right) G_E$$

for "predominantly dilatonic" mode:

$$S_{G_D\pi\pi} = \text{Tr} \int d^4x \frac{1}{2} \partial_\mu \pi \,\partial_\nu \pi \,\tilde{c}_1 \left(\eta^{\mu\nu} - \frac{\partial^\mu \partial^\nu}{M_D^2}\right) G_D$$

with $\{c_1, \check{c}_1, \tilde{c}_1\} = \{62.66, 16.39, 17.23\} \times \lambda^{-1/2} N_c^{-1} M_{\rm KK}^{-1}$

and many more: $S_{G
ho
ho}\propto\lambda^{-1/2}N_c^{-1}$, $S_{G
ho\pi\pi}\propto\lambda^{-1}N_c^{-3/2}$,...

Results for decay into two pions:

Exotic mode: $\Gamma_{G_E \to \pi\pi}/M_E \approx \frac{13.79}{\lambda N_c^2} \approx 0.092 \dots 0.122 \quad (M_E \approx 855 \text{MeV})$ Dilaton mode: $\Gamma_{D \to \pi\pi}/M_D \approx \frac{1.359}{\lambda N_c^2} \approx 0.009 \dots 0.012 \quad (M_D \approx 1487 \text{MeV})$

E 990

・ロト ・通ト ・モト ・モト

Results for decay into two pions:

Exotic mode:
$$\Gamma_{G_E \to \pi\pi}/M_E \approx \frac{13.79}{\lambda N_c^2} \approx 0.092...0.122 \quad (M_E \approx 855 \text{MeV})$$

Dilaton mode: $\Gamma_{D \to \pi\pi}/M_D \approx \frac{1.359}{\lambda N_c^2} \approx 0.009...0.012 \quad (M_D \approx 1487 \text{MeV})$

Most likely experimental candidates for meson with dominant scalar glueball content: $f_0(1500)$ or $f_0(1710)$

 $\Gamma^{(\text{ex})}(f_0(1500) \to \pi\pi)/(1505\text{MeV}) = 0.025(3)$ $\Gamma^{(\text{ex})}(f_0(1710) \to \pi\pi)/(1722\text{MeV}) \sim 0.01$

Results for decay into two pions:

Exotic mode:
$$\Gamma_{G_E \to \pi\pi}/M_E \approx \frac{13.79}{\lambda N_c^2} \approx 0.092...0.122$$
 ($M_E \approx 855 \text{MeV}$)
Dilaton mode: $\Gamma_{D \to \pi\pi}/M_D \approx \frac{1.359}{\lambda N_c^2} \approx 0.009...0.012$ ($M_D \approx 1487 \text{MeV}$)

Most likely experimental candidates for meson with dominant scalar glueball content: $f_0(1500)$ or $f_0(1710)$

$$\Gamma^{(\text{ex})}(f_0(1500) \to \pi\pi)/(1505\text{MeV}) = 0.025(3)$$

$$\Gamma^{(\text{ex})}(f_0(1710) \to \pi\pi)/(1722\text{MeV}) \sim 0.01$$

NB: relative width of lowest (exotic) scalar mode much larger than next ones!?

• another hint that G_E should be discarded?

Results for decay into two pions:

Exotic mode:
$$\Gamma_{G_E \to \pi\pi}/M_E \approx \frac{13.79}{\lambda N_c^2} \approx 0.092...0.122$$
 ($M_E \approx 855 \text{MeV}$)
Dilaton mode: $\Gamma_{D \to \pi\pi}/M_D \approx \frac{1.359}{\lambda N_c^2} \approx 0.009...0.012$ ($M_D \approx 1487 \text{MeV}$)

Most likely experimental candidates for meson with dominant scalar glueball content: $f_0(1500)$ or $f_0(1710)$

$$\begin{split} &\Gamma^{(\mathrm{ex})}(f_0(1500)\to\pi\pi)/(1505\mathrm{MeV})=0.025(3)\\ &\Gamma^{(\mathrm{ex})}(f_0(1710)\to\pi\pi)/(1722\mathrm{MeV})\sim 0.01 \end{split}$$

NB: relative width of lowest (exotic) scalar mode much larger than next ones!?

- another hint that G_E should be discarded?
- or could it perhaps correspond to broad glueball component of σ -meson à la Narison 1998: QCD sum rules need very broad glueball around 1 GeV plus narrow glueball around 1.5 GeV

(cp.: Janowski et al. 1408.4921: eLSM fit of $f_0(1710)$ as predominantly glue, but only with extremely large gluon condensate)

Full decay pattern:

decay $G_D \to 4\pi$ suppressed (below 2ρ threshold): $\Gamma_{G \to 4\pi} / \Gamma_{G \to 2\pi} \sim \lambda^{-1} N_c^{-1}$, while $f_0(1500) \to 4\pi$ dominant:

decay	Γ/M (PDG)	$\Gamma/M[G_D]$
$f_0(1500)$ (total)	0.072(5)	0.0270.037
$f_0(1500) \rightarrow 4\pi$	0.036(3)	0.0030.005
$f_0(1500) \rightarrow 2\pi$	0.025(2)	0.0090.012
$f_0(1500) \rightarrow 2K$	0.006(1)	0.0120.016
$f_0(1500) \rightarrow 2\eta$	0.004(1)	0.0030.004

 $\Rightarrow f_0(1500)$ seemingly disfavored, at least when nearly pure glue

Full decay pattern:

decay $G_D \to 4\pi$ suppressed (below 2ρ threshold): $\Gamma_{G \to 4\pi} / \Gamma_{G \to 2\pi} \sim \lambda^{-1} N_c^{-1}$, while $f_0(1500) \to 4\pi$ dominant:

decay	Γ/M (PDG)	$\Gamma/M[G_D]$
$f_0(1500)$ (total)	0.072(5)	0.0270.037
$f_0(1500) \rightarrow 4\pi$	0.036(3)	0.003 0.005
$f_0(1500) \rightarrow 2\pi$	0.025(2)	0.0090.012
$f_0(1500) \rightarrow 2K$	0.006(1)	0.0120.016
$f_0(1500) \rightarrow 2\eta$	0.004(1)	0.003 0.004

 $\Rightarrow f_0(1500)$ seemingly disfavored, at least when nearly pure glue

 $f_0(1710) \to \pi\pi \ {\rm OK},$

but $f_0(1710)$ decays predominantly into $K\bar{K}$!

 not reproduced by (chiral) WSS model,
 but may be due to mechanism of "chiral suppression of scalar glueball decay" (Chanowitz 2005)

Nonchiral enhancement in mass-deformed WSS?

F. Brünner & AR, PRL 115 (2015) 131601 [1504.05815]

Current quark masses can be introduced in principle through deformations of the WSS model by either world-sheet instantons or with bifundamental background scalar ${\cal T}$

both lead to

$$\int d^4x \int_{u_{\rm KK}}^{\infty} du \, h(u) \operatorname{Tr} \left(\mathcal{T}(u) \operatorname{P} e^{-i \int dz A_z(z,x)} + h.c. \right),$$

where h(u) includes metric (glueball) fields

Choosing appropriate boundary conditions for \mathcal{T} , the quark mass matrix arises through

$$\int_{u_{\rm KK}}^{\infty} du \, h(u) \, \mathcal{T}(u) \propto \mathcal{M} = {\rm diag}(m_u, m_d, m_s),$$

thereby realizing a Gell-Mann-Oakes-Renner relation.

4 D N 4 B N 4 B N 4 B N

Witten-Veneziano mass term

Already in chiral model:

WSS contains (fully determined) Witten-Veneziano mass term for singlet η_0 pseudoscalar from U(1)_A anomaly contributions $\sim 1/N_c$

$$m_0^2 = \frac{N_f}{27\pi^2 N_c} \lambda^2 M_{\rm KK}^2$$

from $S_{C_1} = -\frac{1}{4\pi(2\pi l_s)^6} \int d^{10}x \sqrt{-g} |\tilde{F}_2|^2$ with $\tilde{F}_2 = \frac{6\pi u_{\mathrm{KK}}^3 M_{\mathrm{KK}}^{-1}}{u^4} \left(\theta + \frac{\sqrt{2N_f}}{f_\pi} \eta_0\right) du \wedge dx^4$, where θ is the QCD theta angle and $\eta_0(x) = \frac{f\pi}{\sqrt{2N_f}} \int dz \operatorname{Tr} A_z(z, x)$.

With $N_f = N_c = 3$, $M_{\rm KK} = 949$ MeV, $\lambda = 16.63 \dots 12.55$: $m_0 = 967 \dots 730$ MeV

Witten-Veneziano mass term

Already in chiral model:

WSS contains (fully determined) Witten-Veneziano mass term for singlet η_0 pseudoscalar from U(1)_A anomaly contributions $\sim 1/N_c$

$$m_0^2 = \frac{N_f}{27\pi^2 N_c} \lambda^2 M_{\rm KK}^2$$

from $S_{C_1} = -\frac{1}{4\pi(2\pi l_s)^6} \int d^{10}x \sqrt{-g} |\tilde{F}_2|^2$ with $\tilde{F}_2 = \frac{6\pi u_{\mathrm{KK}}^3 M_{\mathrm{KK}}^{-1}}{u^4} \left(\theta + \frac{\sqrt{2N_f}}{f_\pi} \eta_0\right) du \wedge dx^4$, where θ is the QCD theta angle and $\eta_0(x) = \frac{f\pi}{\sqrt{2N_f}} \int dz \operatorname{Tr} A_z(z, x)$.

With $N_f = N_c = 3$, $M_{\rm KK} = 949$ MeV, $\lambda = 16.63 \dots 12.55$: $m_0 = 967 \dots 730$ MeV

With finite quark masses η_0 and η_8 no longer mass eigenstates. Diagonalizing (with $\mathcal{M} = \operatorname{diag}(\hat{m}, \hat{m}, m_s)$, fixing $m_{\pi} = 140$ MeV and $m_K = 497$ MeV) \rightarrow

$$m_{\eta} = 518 \dots 476 \text{ MeV}, \quad m_{\eta'} = 1077 \dots 894 \text{ MeV},$$

 $\theta_P = -14.4^{\circ} \dots - 24.2^{\circ},$

nice ballpark!

Nonchiral enhancement in mass-deformed WSS!

Holographic realization of mass terms give additional vertices between glueballs and pseudoscalars

Rigorously calculable for $G_D \eta_0^2$,

$$\mathcal{L}_{G_D \eta_0 \eta_0}^{\text{chiral}} = \frac{3}{2} d_0 m_0^2 \eta_0^2 G_D, \qquad d_0 \approx \frac{17.915}{\lambda^{1/2} N_c M_{\text{KK}}}$$

but not (yet) calculable for octet.

Parametrize uncertainty by free parameter x:

$$\mathcal{L}_{G_D\pi\pi}^{\text{massive}} = \frac{3}{2} d_m G_D \mathcal{L}_m^{\mathcal{M}}, \qquad d_m \equiv x d_0$$

Most symmetric choice x = 1 (\Leftrightarrow no $G_D \rightarrow \eta \eta'$) \rightarrow relatively strong enhancement factor for kaons and η mesons:

$$\Gamma_{G \to PP}^{\text{chiral}} \to \Gamma_{G \to PP}^{\text{chiral}} \times \left(1 - 4\frac{m_P^2}{M_G^2}\right)^{1/2} \left(1 + 8.480\frac{m_P^2}{M_G^2}\right)^2$$

Nonchiral enhancement in mass-deformed WSS!

Holographic realization of mass terms give additional vertices between glueballs and pseudoscalars

Rigorously calculable for $G_D \eta_0^2$,

$$\mathcal{L}_{G_D \eta_0 \eta_0}^{\text{chiral}} = \frac{3}{2} d_0 m_0^2 \eta_0^2 G_D, \qquad d_0 \approx \frac{17.915}{\lambda^{1/2} N_c M_{\text{KK}}}$$

but not (yet) calculable for octet.

Parametrize uncertainty by free parameter x:

$$\mathcal{L}_{G_D\pi\pi}^{\text{massive}} = \frac{3}{2} d_m G_D \mathcal{L}_m^{\mathcal{M}}, \qquad d_m \equiv x d_0$$

Most symmetric choice x = 1 (\Leftrightarrow no $G_D \rightarrow \eta \eta'$) \rightarrow relatively strong enhancement factor for kaons and η mesons:

$$\Gamma^{\rm chiral}_{G \to PP} \to \Gamma^{\rm chiral}_{G \to PP} \times \left(1 - 4 \frac{m_P^2}{M_G^2}\right)^{1/2} \left(1 + 8.480 \frac{m_P^2}{M_G^2}\right)^2$$

cp. to J.Ellis & J.Lanik [PLB 150 (1985) 289]:

glueballs from effective dilaton theory also with some "nonchiral enhancement"

but too weak to overcome kinematic suppression: $\left(1 - 4\frac{m_P^2}{M_C^2}\right)^{1/2} \left(1 + \frac{m_P^2}{M_C^2}\right)^2 = 1 - O(m_P^4/M_G^4)$

A. Rebhan

Comparison with $f_0(1710)$

decay	Γ/M (PDG)	$\Gamma/M[G_D]$ (chiral)	$\Gamma/M[G_D]$ (massive)
$f_0(1710)$ (total)	0.081(5)	0.0590.076	0.0830.106
$f_0(1710) \rightarrow 2K$	(*) 0.029(10)	0.0120.016	0.0290.038
$f_0(1710) \rightarrow 2\eta$	0.014(6)	0.0030.004	0.0090.011
$f_0(1710) \to 2\pi$	$0.012(^{+5}_{-6})$	0.0090.012	0.0100.013
$f_0(1710) \rightarrow 2\rho, \rho\pi\pi \rightarrow 4\pi$?	0.0240.030	0.0240.030
$f_0(1710) \rightarrow 2\omega$	$0.010(^{+6}_{-7})$	0.0110.014	0.0110.014
$f_0(1710) \to \eta \eta'$?	0	if 0 : ↑
$\Gamma(\pi\pi)/\Gamma(K\bar{K})$	$0.41^{+0.11}_{-0.17}$	3/4	0.35
$\Gamma(\eta\eta)/\Gamma(Kar{K})$	0.48 ±0.15	1/4	0.28

* PDG ratios for decay rates + $Br(f_0(1710) \rightarrow KK) = 0.36(12)$ [Albaladejo&Oller 2008]

• decays into 2 pseudoscalars: massive WSS perfectly compatible with PDG data!

Comparison with $f_0(1710)$

decay	Γ/M (PDG)	$\Gamma/M[G_D]$ (chiral)	$\Gamma/M[G_D]$ (massive)
$f_0(1710)$ (total)	0.081(5)	0.0590.076	0.0830.106
$f_0(1710) \rightarrow 2K$	(*) 0.029(10)	0.0120.016	0.0290.038
$f_0(1710) \rightarrow 2\eta$	0.014(6)	0.0030.004	0.0090.011
$f_0(1710) \to 2\pi$	$0.012(^{+5}_{-6})$	0.0090.012	0.0100.013
$f_0(1710) \rightarrow 2\rho, \rho\pi\pi \rightarrow 4\pi$?	0.0240.030	0.0240.030
$f_0(1710) \rightarrow 2\omega$	$0.010(^{+6}_{-7})$	0.0110.014	0.0110.014
$f_0(1710) \to \eta \eta'$?	0	if 0 : ↑
$\Gamma(\pi\pi)/\Gamma(K\bar{K})$	$0.41^{+0.11}_{-0.17}$	$\mathbf{3/4}$	0.35
$\Gamma(\eta\eta)/\Gamma(K\bar{K})$	0.48 ±0.15	1/4	0.28

* PDG ratios for decay rates + $Br(f_0(1710) \rightarrow KK) = 0.36(12)$ [Albaladejo&Oller 2008]

- decays into 2 pseudoscalars: massive WSS perfectly compatible with PDG data!
- significant decay into 4 pions (after extrapolation to beyond 2ρ threshold): falsifiable prediction of this model! $(f_0(1710) \rightarrow 2\rho^0$ forthcoming from CMS-TOTEM!)

A D N A R N A R N A R N

Constraints on $\eta\eta'$ rates for $f_0(1710)$ as \approx pure glueball

Relaxing x = 1: [F. Brünner & AR, PRD92, 1510.07605] WSS model gives flavor asymmetries consistent with experimental results for $f_0(1710)$ in as long as $\Gamma(G \to \eta \eta')/\Gamma(G \to \pi \pi) \lesssim 0.04$ (upper limit from WA102: < 0.18)

February 10, 2016 23 / 25

decay	М	$\Gamma/M[T(M)]$
$T \to 2\pi$	1487	0.0130.018
$T \rightarrow 2K$	1487	0.0040.006
$T \rightarrow 2\eta$	1487	0.00050.0007
T (total)	1487	$\approx 0.02 \dots 0.03$
$T \to 2\rho \to 4\pi$	2000	0.1350.178
$T\to 2\omega\to 6\pi$	2000	0.0450.059
$T \rightarrow 2\pi$	2000	0.0140.018
$T \rightarrow 2K$	2000	0.0100.013
$T \rightarrow 2\eta$	2000	0.00180.0024
T (total)	2000	$pprox 0.16 \dots 0.21$

Tensor glueball in WSS, and extrapolated to higher mass:

With a mass of 2 GeV, the relative width turns out to be comparable with that of the rather broad tensor meson $f_2(1950)$, which has $\Gamma/M = 0.24(1)$.

Very narrow (unconfirmed) candidate $f_J(2220)$ not compatible with WSS

イロト 不得下 イヨト イヨト

Summary - Glueballs in Witten-Sakai-Sugimoto model

After fitting just m_{ρ} to fix $M_{\rm KK} = 949 \text{ MeV}$

- good prediction of higher vector and axial vector mesons masses,
- reasonable prediction of glueball masses if "exotic mode" discarded

after fitting f_π or $m_\rho/\sqrt{\sigma}$ to also fix 't Hooft coupling at $\lambda=16.63\dots 12.55$

- $\bullet\,$ good prediction of ρ and ω decay rates
- good prediction of anomalous $m'_\eta \propto N_c^{-rac{1}{2}} \lambda M_{\rm KK}$

Holographic glueball decay rates:

- narrow partial width $G_D \rightarrow \pi \pi$, quite compatible with experimental data for $f_0(1710)$
- much stronger decay of $f_0(1710)$ into $K\bar{K}$ need not be indicative of $s\bar{s}$ nature well reproduced if (so far unobserved) decay into $\eta\eta'$ small
- $\bullet\,$ tensor glueball broad if at $\gtrsim 2~{\rm GeV}$

E nar