INTRODUCTION

First historical evidence for pairing interactions: Nuclear Masses

Semiempirical Binding Energy Formula

(Von Weiszacker, 1935)

$$B(A,Z) = a_v A - a_s A^{2/3} - a_c \frac{Z^2}{A^{1/3}} - a_a \frac{(A-2Z)^2}{A} + \delta_p(A)$$

where,

$$\delta_p(A) = \begin{cases} +a_p A^{-1/2} & \text{even-even} \\ 0 & \text{even-odd / odd-even} \\ -a_p A^{-1/2} & \text{odd-odd} \end{cases} \begin{pmatrix} a_p A^{-3/4} \\ a_p A^{-3/4} \end{pmatrix}$$

we will try to understand the value (and A-dependence) of this constant ...

SURFACE VIBRATIONS

Basic inelastic excitation by a one-body field

SURFACE VIBRATIONS

Dispersion relation: f(E)

Microscopic Interpretation (II)

PAIRING VIBRATIONS

Experimental evidence

Traditional interpretation: two modes

(one addition and one removal)

PAIR-NUCLEON TRANSFER (addition)

Microscopic Interpretation (I)

PAIR-ADDITION MODE

PAIR-NUCLEON TRANSFER (removal)

Microscopic interpretation(III)

Basic two-particle stripping process:

but then, the excitation spectrum would be

G.S. (in disagreement with the experimental evidence ...)

PAIR-REMOVAL MODE

Microscopic Interpretation (IV)

$$\begin{array}{ll} H_p \ \rightarrow \ \frac{1}{2} \ g \ Q^{\dagger} \ Q & P^{\dagger} & \rightarrow & Q^{\dagger} = \frac{1}{\sqrt{2}} \sum_{kk' > 0} \left[q_{kk'} \ a_{kk'}^{\dagger} \ a_{kk'}^{\dagger} + q_{k'k}^{\ast} \ a_{k'k} \ a_{k'k} \right] \\ \text{where} & \\ q_{kk'} \ = \ \int \Psi_k^{\ast}(\vec{r}) \ q(r) \ \Psi_{k'}(\vec{r}) \ d\vec{r} \end{array}$$

modify

"As we have seen, the combination $a^{\dagger}a$ is associated with the one-particle operators such as the density $\rho(\vec{r})$ or the potential V. When viewed in this way there seems to be a natural place for densities and potentials associated with the combinations $a^{\dagger}a^{\dagger}a$ and aa. However, you may then argue that since these densities do not conserve the particle number ($_N$) they have no natural role in the description of a system with a fixed number of particles, like a nucleus (e.g. the expectation value for any state of ensemble with fixed number of particles is zero, $\langle N | a^{\dagger} | a^{\dagger} | N \rangle = 0$

In retrospective one might be tempted to say that this attitude held up the development of the present subject for some thirty years."

A. Bohr

PAIRING VIBRATIONS

Macroscopic picture

We visualize it as follows,

that is, an oscillation across the mass partitions.

Additional ansatz:

$$q(r) \propto \frac{\partial \rho}{\partial r}$$

i.e. pairing as a surface effect ...

Picture is Complete!!! ...

Self-consistent coupling!

SELF-CONSISTENT COUPLING

Those who find the self-consistency argument exploited here unfamiliar may benefit from reading Sects. 6.2 and 6.3 of Bohr and Mottelson Vol. II, where they are used within the context of surface vibrations.

А

$$\kappa = 4\pi \left(\frac{R}{3A}\right) \int_0^\infty \left(\frac{\partial\rho}{\partial r}\right) \left(\frac{\partial V}{\partial r}\right) r^2 dr$$

INTRODUCTION

$$\delta_p(A) = \begin{cases} +a_p \ A^{-1/2} & \text{even-even} \\ 0 & \text{even-odd / odd-even} \\ -a_p \ A^{-1/2} & \text{odd-odd} \end{cases} \begin{pmatrix} a_p \ A^{-3/4} \end{pmatrix}$$

we will try to understand the value (and A-dependence) of this constant ...

FINAL...

$$\delta_p(A) = \begin{cases} +a_p A^{-1/2} & \text{even-even} \\ 0 & \text{even-odd / odd-even} \\ -a_p A^{-1/2} & \text{odd-odd} \end{cases} \begin{pmatrix} a_p A^{-3/4} \\ a_p A^{-3/4} \end{pmatrix}$$

Notice 1/2 < 2/3 < 3/4 !!

we do have an understanding of the value (and A-dependence) of this constant ...