Adiabatic model for e.g. (p,d) – breakup

$$T(p,d) = \langle \psi_{d,\vec{k}_d}^{(-)}(\vec{r},\vec{R}) | V_{np} | \chi_{p,\vec{k}_p}^{(+)}(\vec{r}_p) \phi_{n\ell j}(\vec{r}_n) \rangle$$
$$[T_R + \mathcal{H}_{np} + V_p(r_{pA}) + V_n(r_n) - E] \psi_{d,\vec{k}_d}^{(+)}(\vec{r},\vec{R}) = 0$$

1

Since to calculate the transfer amplitude we need the three body wave function only in regions where $V_{np} \neq 0$, r ≈ 0

$$\mathcal{H}_{np} \to -\varepsilon_0, \ V_p(r_{pA}) \to V_p(R), \quad V_n(r_n) \to V_n(R)$$

So, with
$$E_0 = E + \varepsilon_0$$
 "ADWA"
 $\psi_{d,\vec{k}_d}^{(+)}(\vec{r},\vec{R}) = \chi_{d,\vec{k}_d}^{Ad}(\vec{R})\phi_d(r), \ \vec{r} \approx 0$
 $[T_R + V_p(R) + V_n(R) - E_0]\chi_{d,\vec{k}_d}^{Ad}(\vec{R}) = 0$

Compared with $[T_R + U_{dA}(R) - E_0]\chi^{(+)}_{d,\vec{k}_d}(\vec{R}) = 0$

Breakup on transfer reactions - geometry

Increased reflection at nuclear surface - less diffuse deuteron channel potential

<u>Greater surface</u> <u>localisation</u> - L-space localisation

Less nuclear volume contribution and less sensitivity to optical model parameters

More consistent sets of deduced spectroscopic factors

Spectroscopic factors in the adiabatic limit

Excitation		Transferred	Spectroscopic factor			
energy (MeV)	J^{π}	nl_j	DWBA	ADBA	CCBA	Shell Model
0.00	$1/2^{-}$	$0p_{1/2}$	1.0	0.7	0.8	0.61
3.09	$1/2^{+}$	$1s_{1/2}$	1.8	0.8	0.9	_
3.68	$3/2^{-}$	$0p_{3/2}$	0.14	0.14	0.14	0.19
3.85	$5/2^{+}$	$0d_{5/2}$	0.7	0.6	0.6	

Table 16. Spectroscopic factors obtained from the ${}^{12}C(d,p){}^{13}C$ reactions and the shell model calculations.

Way to systematically improve the adiabatic approximation to transfer reactions (Weinberg states)

R.C. Johnson and P.C. Tandy, Nucl. Phys. A 235 (1974) 56

implemented for practical calculations

A. Laid, J.A. Tostevin and R.C. Johnson, Phys. Rev. C 48 (1993), 1307

H. Toyokawa, PhD Thesis, RCNP, Osaka University 1995

Measurements at the two Fermi surfaces

Recent data added to the plot

